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ABSTRACT
Recent years have witnessed growing consolidation of web oper-
ations. For example, the majority of web traffic now originates
from a few organizations, and even micro-websites often choose
to host on large pre-existing cloud infrastructures. In response to
this, the “Decentralized Web” attempts to distribute ownership and
operation of web services more evenly. This paper describes the
design and implementation of the largest and most widely used
DecentralizedWeb platform — the InterPlanetary File System (IPFS)
— an open-source, content-addressable peer-to-peer network that
provides distributed data storage and delivery. IPFS has millions
of daily content retrievals and already underpins dozens of third-
party applications. This paper evaluates the performance of IPFS by
introducing a set of measurement methodologies that allow us to
uncover the characteristics of peers in the IPFS network. We reveal
presence in more than 2700 Autonomous Systems and 152 countries,
the majority of which operate outside large central cloud providers
like Amazon or Azure.We further evaluate IPFS performance, show-
ing that both publication and retrieval delays are acceptable for a
wide range of use cases. Finally, we share our datasets, experiences
and lessons learned.

CCS CONCEPTS
•Networks→Network protocol design; Network measurement;
Naming and addressing;Network performance analysis; •Computer
systems organization → Peer-to-peer architectures; • Gen-
eral and reference → Measurement; Design; Evaluation;
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1 INTRODUCTION
Economies of scale and technical innovations, such as cloud com-
puting, have led to a growing centralization of web systems [8].
For example, recent trends in name resolution, content hosting,
routing [9, 11], protocol development [29, 34, 45] and certificate
authorities all point towards the consolidation of ownership and
operation [49]. An administrator establishing a new website will
likely co-locate their server on a cloud platform such as Amazon
EC2; utilize a third-party DNS provider such as GoDaddy; serve
their content via a Content Delivery Network like Akamai; and
rely on certificates issued by Let’s Encrypt. Although each of these
services is well-engineered and highly performant, they neverthe-
less represent single points of organizational failure. In the most
extreme cases, such players have gained near-monopoly status
and triggered widespread chaos during outages (e.g., OVHcloud,
Cloudflare, AWS) [17, 43, 53]. The monetary costs incurred during
outages are enormous, with Amazon’s eCommerce platform report-
edly losing over $66,000 per minute during an outage in 2013 [14].

In response to this, there has been a growing movement, collo-
quially referred to as the “Decentralized Web”. This encompasses
an array of technologies that strive to provide greater control for
users. These technologies tend to rely on open-source, community-
led software implementations that decentralize traditional web
functionality (e.g., name lookup, hosting, certification), such that
no individual administrative entity could hamper overall opera-
tions or design decisions. A number of successful projects have
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already deployed decentralized systems that offer commonly used
services, e.g.,Mastodon for micro-blogging or PeerTube for video
sharing. However, at the core of any web platform is storing and
serving media objects at scale. We argue that by decentralizing
these core functions, many other applications could readily be built
atop without needing to handle the complexity of decentralization
themselves.

The InterPlanetary File System (IPFS) project aims to achieve this:
it is an entirely decentralized content-addressable media object
storage and retrieval platform. IPFS is a community-driven, open
source effort, which is vital for ensuring community buy-in and
creating an open platform for design innovation. IPFS covers 176
git repositories, across which there have been 60.4 k commits by
1185 code contributors, covering 400+ organizations including uni-
versities, start-ups and large corporations. This paper reports on
our experiences in Protocol Labs, driving forward the IPFS effort.
Protocol Labs is the largest supporter of the IPFS project, employing
or funding most of the full-time contributors. Protocol Labs is also
the largest contributor to the open-source codebase, covering 62 %
of git commits and 75.4 % lines of code. It is worth noting, however,
that large codebase decisions and roadmap setting is led through
a public voting process. Thus, we emphasize that the design and
implementation work reported in this paper stems from countless
community contributions.

IPFS is seeing widespread uptake with more than 3M web client
accesses and beyond 300 k unique nodes serving content in the peer-
to-peer (P2P) network everyweek. IPFS currently underpins various
other Decentralized Web applications, including social networking
and discussion platforms (Discussify, Matters News), data stor-
age solutions (Space, Peergos, Temporal), content search (Almonit,
Deece), messaging (Berty), content streaming (Audius, Watchit),
and e-commerce (Ethlance, dClimate) [5]. Support for accessing
IPFS has further been integrated into mainstream browsers such as
Opera and Brave, allowing widespread and easy uptake.

In this paper, we present the design and implementation of IPFS.
At its core, IPFS relies on four main concepts: (i) Content-based
addressing: unlike HTTP, IPFS detaches object names from host
location — enabling objects to be served from any peer; (ii) Decen-
tralized object indexing: IPFS relies on a decentralized P2P overlay
for indexing all available locations from which objects can be re-
trieved reducing the impact of technical or organizational failure;
(iii) Immutability and self-certification: IPFS relies on cryptographic
hashing to self-certify objects, removing the need for certificate-
based authentication, hence, providing verifiability; and (iv) Open
participation: anybody can deploy an IPFS node and participate in
the network without requiring special permissions or privileges.

The contributions of this paper are as follows:

(1) We present the design and implementation of IPFS (Section
2), detailing how it publishes (Section 3.1) and retrieves (Sec-
tion 3.2) content at scale.

(2) We propose three complementary measurement methodolo-
gies that provide vantage into the deployment, usage and
performance of the IPFS network (Section 4). This is vital
due to the decentralized nature of IPFS. As no individual
entity operates the entirety of IPFS, we use these techniques

to quantify IPFS across a number of dimensions. We make
our datasets and tooling publicly available.

(3) We utilize the above methodologies to evaluate the deploy-
ment success of IPFS (Section 5). We find that IPFS infrastruc-
ture has been deployed in over 2700 Autonomous Systems,
across 464 k IP addresses. This covers 152 countries, with
the majority hosted in the US and China. We further ob-
serve widespread usage by clients with 7.1 million content
retrievals seen from a single vantage point on one day alone.

(4) We finally present a performance evaluation of IPFS (Section
6). We show that, although content retrievals in IPFS are
slower than direct HTTP access, delays are still reasonable
for a number of use cases. For example, 3/4 of retrievals
from Europe are under 2 seconds. This includes looking
up the content host and fetching a 0.5 MB file. To improve
performance, we show how the introduction of gateway
caching can substantially reduce retrieval latency with 76 %
of requests being served in under 250ms.

2 IPFS FUNDAMENTALS
We start by providing an overview of the core building blocks of
IPFS. Namely, how IPFS (i) addresses content; (ii) addresses peers;
and (iii) indexes content, to enable distributed lookups that map
content identifiers to peers hosting the object.

2.1 Content Addressing
At the core of IPFS is a content-based addressing scheme using
unique hash-based Content Identifiers (CIDs), similar to BitTor-
rent [16] or Content-Centric Networking [71] (see related work in
Section 7). CIDs are the base primitive that decouple a name for
content from the storage location. In contrast, location-based sys-
tems, such as HTTP, bind content addresses (URLs) to their primary
host. This fundamental design decision enables the decentralization
of content storage, content delivery, and address management. In
addition, by decoupling the content address from its storage loca-
tion, CIDs prevent vendor lock-in and remove the need for central
authorities to handle address allocation.

Figure 1 shows an example of a CID and its structure. It relies
on a set of self-describing data representation protocols [4] and is
composed of the following four fields:

Multibase prefix: Indicates one of the 24 currently supported
base-encodings with which the binary CID has been encoded
(“b" for base32 in Figure 1).

CID-Version identifier: Indicates the CID version (v1). Cur-
rently, two versions exist (v0 and v1).

Multicodec identifier: Specifies how the addressed data has
been encoded (protobuf, json, cbor, etc.).

Multihash: A self-describing hash-digest of the addressed
data. The Multihash includes metadata indicating the hash
function used (default sha2-256) and the length (default 32
bytes) of the actual content hash. The termMultihash stems
from the fact that it can support any hashing algorithm.

When content is added to IPFS, it is split into chunks (default 256 kB)
each of which is assigned its own CID. The CID of each chunk
results from hashing its content and adding the above metadata.
Once all chunks have a CID, IPFS constructs a Merkle Directed
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Example of a CIDv1:

bafybeigdyrzt5sfp7udm7hu76uh7y26nf3efuylqabf3oclgtqy55fbzdi

⇓
<multibase>(cid-version ∥ multicodec ∥ multihash︸                                                          ︷︷                                                          ︸)

v1
00000001︸     ︷︷     ︸
CID-Version

dag-pb
01110000︸     ︷︷     ︸
Multicodec

sha2-256
00010010︸     ︷︷     ︸
Multicodec

32 bytes
00100000︸     ︷︷     ︸
Length

SHA256 hash
110010010 . . .︸           ︷︷           ︸
Actual Hash︸                                       ︷︷                                       ︸

Multihash

Figure 1: Structure of a CID.
Acyclic Graph (DAG) of the file [37]. This Merkle DAG is the
form in which the file is provided by the original content publisher.
A Merkle-DAG is a data structure similar to a Merkle-tree but
without balance requirements. The root node combines all CIDs of
its descendant nodes and forms the final content CID (commonly
called root CID). In Merkle-DAGs, a node is allowed to have multiple
parents, an important property that allows for chunk de-duplication.
In turn, content de-duplication means that the same content does
not need to be stored or transmitted twice, saving both storage and
bandwidth resources. Further, Merkle DAGs are agnostic to where
the content is stored. Thus, they do not need to be updated when a
file is replicated on or deleted from nodes in the network.

Thanks to their hash-based structure, CIDs are immutable and
self-certifying, i.e., content cannot be altered without modifying
its CID. This enables self-verification by comparing the CID with
the hash of the content itself. Clearly, this property becomes a chal-
lenge for dynamically changing digital objects, which we address
in Section 3.3.

2.2 Peer Addressing
Upon joining the IPFS network by connecting to a set of canonical
bootstrap peers, peers generate a public-private key pair. Every peer
in the IPFS network is identified by its unique PeerID, which is
the hash of its public key (represented as a Multihash). The PeerID
remains the same, unless the node operator chooses to change
it manually. When establishing a secure communication channel,
the PeerID is used to verify that the public key used to secure the
channel is the same as the one used to identify the peer.

In order to represent the locations of remote peers, IPFS relies
on Multiaddresses. A Multiaddress is a self-describing, human-
readable, hierarchically-separated sequence of protocol choices.
The term Multiaddress stems from the fact that the format allows
multiple protocols and address types to be included. Each Multiad-
dress describes an endpoint enabling a peer to be interacted with.
IPFS encompasses multiple protocols, from the network layer up to
the application layer.

Figure 2 presents the structure of a Multiaddress, showing the
network and transport protocols for the communication (IPv4 and
TCP) their corresponding location-based address information (IP ad-
dress 1.2.3.4 and TCP port number 3333) followed by the protocol
to address one particular peer (p2p) and its PeerID (QmZyWQ14...).
As a result, Multiaddresses point to remote processes by encoding
multiple layers of addressing information into a path representa-
tion. A Multiaddress uses this construct for two reasons. First, not
all IPFS nodes share the same subset of protocols. Multiaddresses
allow nodes to know if they will be able to connect to a remote peer

Network Layer︷            ︸︸            ︷
/ip4/1.2.3.4︸                ︷︷                ︸

Protocol & Address

∥

Transport Layer︷       ︸︸       ︷
/tcp/3333︸                ︷︷                ︸

Protocol & Port

∥

P2P Overlay︷                   ︸︸                   ︷
/p2p/QmZyWQ14...︸                   ︷︷                   ︸

PeerID

Figure 2: Structure of a Multiaddress.

before attempting the connection. Second, the extensible syntax of
Multiaddresses allows for intermediate relaying of communication
through prefixing peer addresses. This is used to proxy messages
to in-browser nodes that cannot be directly contacted.

2.3 Content Indexing
To publish or retrieve an object, it is necessary to create a mapping
between a CID and a PeerID that can provide the object (including
its Multiaddress). In order to operate in a decentralized fashion and
support content and peer discovery, these mappings are indexed on
a Distributed Hash Table (DHT), which exposes simple PUT and GET
primitives. IPFS’s DHT is based on Kademlia [44], similar to that
used by the BitTorrent Mainline DHT [16, 24]. CIDs and PeerIDs
reside in a common 256-bit key space by using the SHA256 hashes
of their binary representations (see Figure 1) as indexing keys.

Based on our practical experiences with the live network, we
have made a number of tweaks compared to the original Kademlia
specification. Nodes in the DHT use 256-bit SHA256 keys instead
of the 160-bit SHA1 keys. This is to anticipate advances in delib-
erate hash collisions [67]. We also maintain 𝑖 = 256 buckets of
𝑘−nodes each (where 𝑘 = 20) to split the hash space. Finally, we
employ reliable transport protocols such as TCP and QUIC (in-
stead of UDP) [44], as this makes connection management in the
implementation more straightforward.

New peers join the DHT as eitherDHT Servers, if they have public
IP connectivity, or as DHT Clients, if they are not publicly reachable,
e.g., because they are behind a Network Address Translation (NAT)
device. IPFS differentiates between DHT clients and servers through
a simple technique called Autonat [38]. Autonat works as follows:
new peers join by default as clients and immediately ask other
peers in the network to initiate connections back to them. If more
than three peers can connect to the newly joining peer, then the
new peer upgrades its participation to act as a server node. If more
than three peers cannot connect, the peer continues as a client.
DHT Servers perform all network operations, i.e., storing content,
storing mapping records, and providing these to requesting peers.
In contrast, DHT Clients only request records or content from
the network but do not store or provide any of them. The DHT
client/server distinction prevents unreachable peers from becoming
part of other peers’ routing tables, thus speeding up the publication
and retrieval processes.

3 IPFS IN ACTION
In this section we explain how content is published (Section 3.1),
and how other peers are able to find and retrieve it (Section 3.2).
Both processes are depicted in Figure 3 and marked throughout
this section. Then in Section 3.3, we describe how IPFS deals with
mutable content.
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Figure 3: IPFS publication and retrieval. Publication in-
volves: 1○ Import content toProviders local IPFS process and
allocate CID 2○ DHT Walk to find closest peers to CID 3○
Store provider record with closest peers. Retrieval involves:
4○ Opportunistic Bitswap requests to already connected
peers for CID 5○ DHT Walk to find a provider record stor-
ing peer 6○ Requestor connects to Provider and fetches the
content. The diagram omitsRequestors second DHTWalk to
resolve Providers PeerID to their network address.

3.1 Content Publication
To make content available in the IPFS network, the content is first
imported to IPFS and allocated a CID 1 (see Section 2.1).

After content has been imported into the local IPFS instance, it is
neither replicated nor uploaded to any external server. To publish
it, the host generates a provider record and pushes it into the DHT.
This record maps the CID to its own PeerID. The provider record
is stored on the 𝑘 = 20 closest peers in terms of their PeerIDs’
XOR distance [44] from the SHA256 hash of the CID. The record is
replicated on 𝑘 peers to ensure that records remain available even if
some of those 𝑘 peers leave the network. 20 is selected based on our
practical experiences (as well as a recommendation in the original
Kademlia specification [44]), serving as a compromise between
excessive replication overhead and risking record deletion because
of peer churn. We explain how the 20 closest peers are discovered
in Section 3.2.

Once IPFS has found the closest peers 2 , it attempts to store
the provider record with them. It does so by establishing a network
connection and then initiating an RPC 3 . The process does not
wait for a response from each peer but will instead perform the
RPCs in a “fire and forget” fashion which will become relevant in
the performance evaluation (Section 6). Note, any peer that later
retrieves the data becomes a temporary (or permanent, if they
so choose) content provider themselves by publishing a provider
record pointing to their own node to the DHT. Peers retrieving the
content do not need to trust the new providing peer but only verify
that the data they were served matches the requested CID.

A peer must also publish its peer record, which maps its own
PeerID to any Multiaddresses associated with it. This is used by

requesting peers to discover the underlying network address of the
peer. Publication of the peer record follows the same CID-to-PeerID
procedure as described above and happens independently of any
content publication.

Apart from the replication factor (𝑘 = 20), provider records are
associated with two other parameters: (i) the republish interval, by
default set to 12 h, to make sure that even if the original 20 peers
previously responsible for keeping the provider record go offline,
the provider will assign new ones within 12 h; and (ii) the expiry
interval, by default set to 24 h, to make sure that the publisher has
not gone offline and is still willing to serve the content. These
settings aim to prevent the system from storing and providing
stale records. It is worth noting that peers behind NATs cannot
host content themselves. Thus, third party hosts, commonly called
pinning services are used to publish content on behalf of NAT’ed end-
users (usually for a fee). Although a NAT hole-punching solution
is currently being developed [36], it is still under-test.

3.2 Content Retrieval
Once the provider and peer records have been published, users
can retrieve the content. To retrieve the content, the requesting
peer performs four steps: (i) Content discovery: identify PeerID(s)
that host the content/CID; (ii) Peer discovery: map the PeerID to a
Multiaddress, e.g., an IP address; (iii) Peer routing: connect to the
peer; and (iv) Content exchange: fetch the content.
Content Discovery. Content discovery in IPFS is done primarily
using the DHT (see Section 2). However, before entering the DHT
lookup, the requesting peer asks all peers it is already connected
to for the desired CID 4 . This is done (using the Bitswap proto-
col, discussed later in this section) in an opportunistic fashion. It
allows a node to resolve content faster in case a peer’s immediate
neighbours store the desired content. If that initial attempt is not
successful, content discovery falls back to the DHT with a timeout
of 1 second.

The DHT implements multi-round iterative lookups in order to
resolve a CID to a peer’s Multiaddresses, a process we refer to as a
DHT walk 5 . When peer A issues a request for CID 𝑥 , the request
is forwarded to 𝛼 = 3 nodes whose PeerIDs are closest to 𝑥 in peer
A’s routing table (as per the original Kademlia specification [44]).
The peers receiving those requests reply with the requested content
if they have it. If they do not have the requested content, they reply
with either the provider record that points to the PeerID that holds
the requested item together with the peer’s Multiaddress (if they
have it), or with the peers it knows of whose PeerID is closer to 𝑥 .
The process continues until the node is returned with the PeerID
that has previously declared to hold a copy of the requested CID
through a published provider record.
Peer Discovery. After the content discovery phase, a client knows
the PeerID(s) hosting the desired content. As mentioned earlier,
PeerIDs need to bemapped to a physical network address by looking
up the peer record. This procedure is called Peer Discovery and is
carried out by querying the DHT for a second time.

To further streamline the process, each IPFS node maintains an
address book of up to 900 recently seen peers. Nodes check whether
they already have an address for the PeerID they have discovered
before performing any further lookups.
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Peer Routing. Once the PeerID is resolved to a peer record, the
requesting node will possess the Multiaddress(es) of the peer that
appears to have the content. It therefore uses the list of addresses
to connect to the desired peer.
Content Exchange. As provider peers are identified, content fetch-
ing is done using Bitswap, a simple chunk exchange protocol 6 .
Bitswap issues requests for the content items in wantlists. Requests
are sent using an IWANT-HAVE message. Recipient peers that have
the block reply with a corresponding IHAVE message. The request-
ing peer finally responds with an IWANT-BLOCK message. Receipt
of the requested block terminates the exchange. Recall, the Bitswap
protocol is also used to discover content available on nearby neigh-
bours opportunistically. The full details of the Bitswap protocol
design as well as a number of proposed optimizations can be found
in [20, 21].

3.3 Content Mutability
Given their hash-based structure, CIDs are permanent, immutable,
and self-certifying. This makes them ideal for decentralizing names-
pace management, as it avoids the need for a central coordinator.
Furthermore, their immutability and self-certification make univer-
sal caching (i.e., from any peer) possible. However, this becomes
problematic for handling dynamic content, e.g., evolving text doc-
uments. In order to cope with mutable content, IPFS provides the
option of publishing content based on the hash of the publisher’s
public key (i.e., PeerID) instead of the hash of the content (i.e., CID)
itself. Those, so called InterPlanetary Name System (IPNS) records,
map the CID of the publisher’s public key to another CID signed by
the corresponding private key. This way, content can be updated
and obtain a different CID, but an immutable reference (i.e., the
CID of the publisher’s public key) is created and used. As this mech-
anism makes use of additional constructs, we leave further details
out and point the reader to [3, 56] for more details.

3.4 IPFS Gateways
To broaden access to IPFS-hosted content for users who have not
installed IPFS software, the IPFS system is complemented with
a gateway model. Gateways offer (HTTP) entry points into IPFS,
enabling users who do not run any IPFS software to access content.
Our gateway implementation acts as a bridge: on one side is a DHT
Server node, and on the other side is an nginx HTTP web server,
which can receive GET requests containing the CID as the URL path,
i.e., https://ipfs-gateway.io/ipfs/{CID}.

By embedding caching within the gateways, we further stream-
line performance by aggregating user demand. Each gateway server
runs two forms of content storage: (i) the default nginx web cache,
with a Least Recently Used replacement strategy; and (ii) The IPFS
node store, which holds content manually uploaded by the Web3
and NFT Storage Initiatives.1 These allow third parties to pin con-
tent in the IPFS store of the gateway tomake it persistently available.
We emphasize that the gateways are entirely optional for the op-
eration of the overall storage and retrieval network and are only
used for content retrievals through the browser.

1https://web3.storage/, https://nft.storage

Protocol Labs operates two major gateways, and in total, there
are 107 known gateways.2 Note, operating a gateway does not
require authorization or permission by any entity, but in order for
it to be useful for the network, it needs to be set up with a public
IP address.

4 EVALUATION DATA
We next present the data we use to evaluate IPFS as a system.
Due to its decentralized nature, it is challenging to record activities
across all IPFS nodes. Particularly, since independent node operators
dominate IPFS, no complete record exists. To address this challenge,
we compile three datasets comprising a mix of active and passive
measurements. Figure 4a presents a time series of our measurement
periods, which we describe in more detail below.

4.1 Peer Data
Our first dataset covers information about peers acting as DHT
Servers. As there is no central repository of such information, we
employ active measurements to gather this data. We implement
a crawler [64] to gather a comprehensive list of all peers that are
engaged in the DHT. We run the crawler from a server in Germany
every 30 minutes. The crawler recursively asks peers in the network
for all entries in their 𝑘-buckets starting from the six well-known
default IPFS bootstrap peers until it finds no new entries. The pro-
cedure that yields the list of all 𝑘-bucket peers resembles previous
work [28].

We started our measurements on 2021-07-09 and upgraded it
on 2021-09-24 to collect the association of single peers with their
Multiaddresses, agent version, supported protocols, and connection,
handshake and crawl duration. We then map all IP addresses to
their country and Autonomous System (AS) using GeoLite2, and
tag it with its CAIDA AS Rank [50]. In total, we have performed
over 9500 network crawls. Figure 4a plots the number of peers we
observed each day.

To quantify peer uptime, we periodically revisit all previously
discovered and online peers and measure their session lengths
(defined as their distinct, continuous time periods online). Due to
the scale, we adapt the probe frequency based on how often we
observe a peer to be accessible. Specifically, we select an interval of
0.5x the observed uptime, starting at a minimum of 30 seconds and
ending at a maximum of 15 minutes. This is because it is more likely
for peers to stay online if we observe them to have been online
for an extended time period. We make our crawl data available for
further research on IPFS with the CID:

bafybeigkawbwjxa325rhul5vodzxb5uof73neszqe6477nilzziw5k5oj4

4.2 IPFS Gateway Usage Data
Our second dataset covers all the GET requests taken from a public
IPFS Gateway run by Protocol Labs (ipfs.io), shedding light on
large-scale usage patterns of IPFS. This data represents a geographic
subset of total gateway traffic, as the sampled traffic comes from
one of several gateway instances which load balance inbound traffic
using anycast. This particular gateaway is located in the US.

The dataset covers one day of access in January 2022 with 7.1M
user requests. Each entry maps to a single user request and response
2https://ipfs.github.io/public-gateway-checker/
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Figure 4: a) Total number of crawled peers over time and their fraction of dialable and undialable peers (one-day periodicity).
The graph also depicts several events and measurement time periods which help to assess our measurement results in later
sections. b) Request count of a single gateway on 2022-01-02.

Table 1: Number of publication and retrieval operations
from each AWS region.

AWS Region Publications Retrievals
af_south_1 547 2, 047
ap_southeast_2 547 2, 630
eu_central_1 547 2, 708
me_south_1 547 2, 112
sa_east_1 546 2, 363
us_west_1 547 2, 704
Total 3, 281 14, 564

information to the gateway comprising of request timestamp, user
agent, HTTP referrer, (Maxmind-located) city, response sizes, and
cache hit/miss information. We aggregate users by unique combi-
nations of IP and user agent. Overall, we find 101 k users accessing
274 k unique CIDs during the day of data collection. For context,
Figure 4b shows the number of requests received (5 minutes bins)
at the gateway, based on the timezone of the gateway (Pacific Stan-
dard Time) as well as the geolocated user timezone. We make the
access logs available on IPFS with the CID:

bafybeiftyvcar3vh7zua3xakxkb2h5ppo4giu5f3rkpsqgcfh7n7axxnsa

4.3 Performance Data
Our third dataset focuses on benchmarking content publication
and retrieval performance. We use six virtual machines in six
different regions on AWS. Namely, the t2.small machines run
in me_south_1 (Bahrain), ap_southeast_2 (Sydney), af_south_1
(Cape Town), us_west_1 (N. California), eu_central_1 (Frankfurt)
and sa_east_1 (São Paulo). On each machine we run a go-ipfs
v0.10.0 instance acting as a DHT server node. We use these con-
trolled instances to interact with the public IPFS network and per-
form tailored performance experiments. The measurements were
conducted during the shaded time period in Figure 4a labeled “DHT
Perf”.

Upon each iteration, a single node announces a new 0.5MB ob-
ject (i.e.,CID) to the network. Following this, all other nodes retrieve
the object. This involves looking up the provider and peer records,
connecting to the providing peer and then downloading the object.
As soon as all remaining nodes have completed this process, they
disconnect to prevent the next retrieval operation being resolved
through Bitswap and instead resort to the DHT for lookup and
discovery. It is worth noting that this is the closest one can get to a
controlled experiment in the public IPFS network. This is because it

is very difficult to replicate peers’ behaviour (e.g., churn, CPU and
traffic load) in a simulation environment. Table 1 lists the number
of publications and retrievals we have performed from each region.
The varying numbers of publications and retrievals stem from ter-
minating the experiment before the instance in sa_east_1 finished
its latest publication and missed instructions on our control plane
respectively. This does not affect the correctness of our measure-
ment but only influences the statistical significance of the results
below. The data alongside analysis code is published on IPFS with
the CID:

bafybeid7ilj4k4rq27lg45nceq4akdpetav6bcujgiym6vch5ml24tk2t4

4.4 Ethical Considerations
The Peer and Performance datasets raise limited ethical concerns.
They involve collecting IP addresses, yet we do not attempt to
map these back to personal identities, as such analysis was not
within the scope of this study. Furthermore, after performing the
geolocation analysis, we have anonymized the datasets that we have
made available. The IPFS Gateway Usage Data contains personal
information, as it covers requests fromweb clients. This information
is collected as part of our routine operations, and in line with
IPFS’ policies.3 Further, we do not trigger extra data collection. We
anonymize IP addresses, and do not perform lookups on the CIDs
to infer the nature of the content exchanged.

5 DEPLOYMENT SCALE
We now measure the scale of the IPFS network by looking at peers,
physical machines, and gateway users. Unless noted otherwise,
we limit our analysis to the shaded time period labeled “Detailed
Analysis” in Figure 4a.

5.1 Geographical Distribution
Geographical Distribution of Peers. Using the Peer dataset, we
discover a total of 198,964 IPFS peers (as identified by their PeerID)
with 1,998,825Multiaddresses in the DHT, covering 464,303 unique
IP addresses from 152 countries. Of these IP addresses, we were
able to establish a connection to 253,198 (54.5 %) at least once while
211,105 (45.5 %) were always unreachable.

3https://docs.ipfs.io/concepts/privacy-and-encryption/
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Figure 5: Geographical distribution of peers. “Multihoming”
peers were counted repeatedly.

Figure 5 shows the geographical distribution of PeerIDs. Al-
though we see widespread uptake of IPFS, we observe a high con-
centration in certain regions. The US (28.5 %) and China (24.2 %)
dominate the share of peers, followed by France (8.3 %), Taiwan
(7.2 %), and South Korea (6.7 %). In addition, “Multihoming” is com-
monplace: around 8.8 % of all peers advertise Multiaddresses that
include multiple IP addresses mapped to multiple countries.

To better understand the deployment in these different regions,
Figure 7a presents the distribution of peers with >90 % uptime (“re-
liable”), whilst Figure 7b presents the distribution of peers that were
unreachable during our entire measurement period. We found 1.4 %
(2747) of observed peers to be “reliable”, whereas around 1/3 of
peers are never accessible. The relatively even spread of countries
gives us confidence that no individual region could disrupt IPFS
single-handedly, without significant strategic effort. For example, if
a single country hosted the majority of IPFS nodes, it could become
possible for the state to unduly influence the wider network, which
does not seem to be the case. The distribution of reliable peers is par-
ticularly egalitarian, with the largest player (US) hosting just 0.3 %
of peers. We see similar trends for unreachable peers. Although
China does contain a large share (12.5 %), these unreachable peers
naturally have less impact on the overall system.

Note that a single IP address can host multiple PeerIDs. Figure 7c
plots a CDF of the number of peers per host. Although the majority
(92.3 %) of IP addresses host a single PeerID, we find that the top
10 IP addresses host almost 66 k distinct PeerIDs. This raises con-
cerns about potentially misbehaving peers that rotate their PeerIDs.
Such peers would be able to hamper routing performance, e.g., by
persistently dropping requests.
Geographical Distribution of Gateway Users. Using the gate-
way usage dataset, we also inspect the geographical distribution
of incoming requests to get an idea of the scale of gateway usage.
In total, we observe requests from 59 countries. Figure 6 shows
their geographical distribution. Since the sampled node was located
in the US, we find more than three-quarters of user requests to
the gateway come from the US (50.4 %). This is followed by China
(31.9 %), Hong Kong (6.6 %), Canada (4.6 %), and Japan (1.7 %).

5.2 Autonomous System Distribution
Next, we investigate the Autonomous System (AS) coverage of the
IPFS deployment and assess potential centralization in ASes or
associated cloud providers.

10 k

20 k

30 k

40 k

Figure 6: Geographical distribution of users requesting con-
tent via the Gateway.
Autonomous SystemCoverage. In total, we observe peers in 2715
unique ASes. Figure 7d presents the number of IP addresses in
each AS. We rank ASes (on the x-axis) by their CAIDA AS Rank.
Unsurprisingly, we see a small set of highly ranked ASes containing
many IPFS hosts. The top 10 ASes contain 64.9 % of IP addresses,
whereas the top 100 contain 90.6 %. This is rather different from
our prior observations related to geography, which show more
egalitarian trends. Although there is a wide geographic spread, we
find that each region is dominated by a small number of ASes. To
explore this, Table 2 presents the number of IP addresses observed
in the top ASes. Although we observe that IPFS is deployed in a
large number of ASes, >50 % of IPs found are in just 5. ASes in
China stand out in this regard, with two Chinese ASes containing
>30 % of all observed IP addresses. This, again, raises concerns over
the concentration of peers in specific networks. However, we argue
that the widespread deployment across 2715 ASes, together with
the decentralized structure of the P2P system (i.e., with regard to
indexing and resolution), would ensure resilience even in cases of
severe network fragmentation, or targeted disruption attempts.
Cloud Coverage. Another potential cause of the above trends
is the presence of prominent cloud infrastructure, used by IPFS
node operators. To this end, we use the Udger data set [6] to get
a curated list of 1525 cloud providers and their IP ranges. Table 3
lists the number of nodes that are deployed in each one. Contrary
to expectations, we see that just a minority (<2.3 %) of IPFS nodes
are hosted in cloud infrastructure. This figure is in stark contrast
to other decentralized web platforms such as Mastodon, where 6 %
of the infrastructure is hosted on Amazon alone [49]. This is an
important finding for a decentralized storage and delivery network,
and suggests that the majority of users host their own deployments.

5.3 Churn
Churn refers to the action of peers arriving and departing from the
network. The churn rate within a system like IPFS is important as
it influences decisions such as for how long should peers retain
information about other (online) peers. To calculate churn from
our Peer dataset, we follow the method used in [52, 57, 61] for long
session handling to minimize bias towards shorter sessions and
account for peers that stay online beyond our selected measure-
ment time window. Figure 8 plots CDFs of DHT peer uptimes for
countries that stood out in the deployment analysis of Section 5,
based on 467,134 session observations that started in the first half
of our “Detailed Analysis” time window (see Figure 4a).

We observe that uptime tends to be short, with 87.6 % of sessions
under 8 hours and only 2.5 % of sessions exceeding 24 hours. This
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Figure 7: a) Geographical distribution of peers that were reachable for >90 % of the measurement period. Note the ‰ unit on
the y-axis. b) Geographical distribution of peers that were always offline and not reachable at all during the measurement
period. c) CDF of the number PeerIDs per IP address d) Distribution of IPs across ASes according to their size (measured by
their AS rank).

Table 2: Autonomous systems covering >50 % of all found IP
addresses.

Share ASN Rank AS Name
18.9% 4134 76 CHINANET-BACKBONE No.31,Jin-rong Street, CN
12.8% 4837 160 CHINA169-BACKBONE CHINA UNICOM China169 Back., CN
9.6% 4760 2976 HKTIMS-AP HKT Limited, HK
6.9% 26599 6797 TELEFONICA BRASIL S.A, BR
5.3% 3462 340 HINET Data Communication Business Group, TW

Table 3: Percentage of nodes hosted on cloud providers. The
table shows the top ten and selected cloud providers.

Rank Provider IP Addresses IP Address Share
1 Contabo GmbH 2038 0.44%
2 Amazon AWS 1792 0.39%
3 Microsoft Azure/Coporation 1536 0.33%
4 Digital Ocean 836 0.18%
5 Hetzner Online 592 0.13%
6 GZ Systems 346 <0.10%
7 OVH 341 <0.10%
8 Google Cloud 286 <0.10%
9 Tencent Cloud 258 <0.10%
10 Choopa, LLC. Cloud 244 <0.10%
12 Alibaba Cloud 180 <0.10%
13 CloudFlare Inc 140 <0.10%
27 Oracle Cloud 27 <0.10%
54 IBM Cloud 9 <0.10%

235 Other Cloud Providers 2017 0.43%
Non-Cloud 453,661 97.71%

helps explain our design decision to replicate records on a relatively
large number of peers (𝑘 = 20, see Section 2.3). Briefly, we also note
that stability varies greatly based on region. For example, whereas
the median uptime for Hong Kong is just 24.2min, it is more than
double that figure for Germany.

5.4 Discussion & Takeaways
IPFS is designed to be highly decentralized. Although we observe
geographical agglomeration in certain regions, we also see IPFS
being widely adopted around the globe. Especially important is
the finding that fewer than 2.3 % of IPFS nodes run in major cloud
platforms. This suggests that individuals are running IPFS nodes on
personal or on-premises commodity hardware. As a downside, this
contributes to the high churn rate observed (only 2.5 % of peers stay
online for more than 24 h). Further, although we find peers in 2715
ASes, the top 10 contain 64.9% of peers alone. This suggests that we
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Figure 8: Churn rate by region for 467,134 session observa-
tions. Each line shows the cumulative distribution function
of the DHT peer uptimes in a given region. The step shape
correlates with the sampling interval of our crawler.

should push harder to broaden deployment and avoid consolidation
in a minority of ASes.

6 IPFS PERFORMANCE EVALUATION
In this section, we evaluate the performance of IPFS’ two core
functions: content publication and content retrieval. We also turn
to our Gateway dataset to better understand IPFS’s usage through
browsers.

6.1 Content Publication Performance
As explained in Section 3.1, the content publication process consists
of two steps. First, the content is imported into the local IPFS node
and second, provider records are stored with suitable peers. The
first (i.e., importing content) step was covered in [7]. Here, we focus
on the publication of provider records to the network.
Overall Delay. Figure 9a shows CDFs for the duration of the over-
all content publication process. We present separate results for each
AWS region from which the measurements are launched. The over-
all publication process across all regions takes 33.8 s, 112.3 s, and
138.1 s in the 50th, 90th, and 95th percentiles, respectively. Note
that the publication delay is independent of the content size as only
the provider record is being published. Table 4 breaks down the
publication duration percentiles for each AWS region individually.
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Figure 9: CDFs for content publication (a–c) and content retrieval (d–f) for each AWS region that we employed for our lookup
measurements. a) The overall publication duration includes b) walking the DHT, and c) the batch of RPCs to store the provider
record at suitable peers. d) The overall content retrieval duration includes e) walking the DHT twice, and f) fetching the data
from the providing peer. The sample size is 4324 in all graphs across all AWS regions combined.

Table 4: Latency percentiles of the overall DHT publication
and retrieval operations from different AWS regions.

Publication Percentiles Retrieval Percentiles
AWS Region 50th 90th 95th 50th 90th 95th
af_south_1 28.93 s 107.14 s 127.22 s 3.75 s 4.88 s 5.31 s
ap_southeast_2 36.26 s 117.74 s 142.79 s 3.76 s 4.85 s 5.15 s
eu_central_1 27.70 s 106.91 s 133.27 s 1.81 s 2.28 s 2.50 s
me_south_1 29.32 s 105.45 s 130.48 s 2.59 s 3.24 s 3.48 s
sa_east_1 42.32 s 115.45 s 148.04 s 3.60 s 4.56 s 4.93 s
us_west_1 36.02 s 121.13 s 147.59 s 2.48 s 3.17 s 3.42 s

We see similar results across all regions despite the larger build-up
of presence in the US and China.
Delay Breakdown. The two main constituents of delay are the
DHT walk (to discover the 20 closest peers to the CID) and the
RPC operations that push provider records to the chosen peers.
Figure 9b presents CDFs of the DHT walk duration. We see that
this constitutes the largest component of the delay. On average, the
DHT walk covers 87.9 % of the overall delay. Naturally, optimizing
this is a target of our future work.

In contrast, Figure 9c shows the CDFs for the duration of the
batch of RPCs. This reveals much faster performance, with 43.3 %
of RPC batches completing in under 2 s. That said, 53.7 % exceed 5 s,
and 11.3 % exceed 20 s. Closer inspection reveals a number of spikes
in the distribution. These are driven by various timeout operations
in the protocol. For example, the spike at 5 s is caused by dial time-
outs on the transport level of the TCP and QUIC implementations,
whereas the spike at 45 s is caused by the handshake timeout of
the Websocket transport. These timeouts stem from less responsive
peers. This points to unavoidable challenges when operating de-
centralized infrastructure, where the responsiveness of peers can
be difficult to predict.

6.2 Content Retrieval Performance
Overall delay. Figure 9d shows CDFs for the duration of the over-
all retrieval operation. We observe success rate of 100 %, confirming
the reliability of the system. Although we control the providing
and retrieving peers for this test, this high success rate is not self-
evident since retrieval operations involve many interactions with
peers outside our control. However, we experience notable perfor-
mance diversity, with delays on average higher than typical web

page loading times. Overall, retrieval performance is much faster
than publication. The content retrieval process across all regions
takes 2.90 s, 4.34 s, and 4.74 s in the 50th, 90th, and 95th percentiles,
respectively. We emphasize that, in contrast to HTTP, this includes
the lookup time, whereby CIDs are mapped to eligible locations to
obtain the content from (in contrast to HTTP URLs that encode the
location a priori).

Table 4 further breaks down the retrieval duration percentiles for
each AWS region individually. Interestingly, we observe variations
across regions. For example, the median retrieval delay in central
Europe is just 1.81 s, compared to 3.75 s from South Africa. These
slower retrievals are in-line with prior measurements of web per-
formance in Africa [23]. Further, recall that due to Bitswap, DHT
queries are only launched after a timeout of 1s (see Section 3.2),
setting a minimum baseline of 1s delay. Finding intelligent ways to
minimize this initial delay is a key line of future work.
Delay Breakdown. The three main constituents of retrieval de-
lay are (i) the opportunistic content discovery through Bitswap,
which (if unsuccessful) times out at 1 s4; (ii) the time spent walking
the DHT to find provider and peer records; and (iii) the content
exchange operation to fetch the object. Figure 9e presents CDFs
for the combination of DHT walks to discover provider and peer
records. The median duration across all regions for a single DHT
walk is 622ms and, therefore, significantly faster than the DHT
walk for the publication operation. This is because a retrieval DHT
walk terminates after the discovery of a single record-hosting node,
rather than 20 in the case of publication. More generally, it is posi-
tive to see that single DHT walks complete with sub-second latency
for most regions. In fact, we see that for all regions both DHT walks
(first to find the provider record and second to find the peer record)
complete in less than 2 s for 50 % of the retrievals. This is in stark
contrast to previous DHT deployments, where latency can even
exceed a minute [18].

Finally, Figure 9f shows the content fetch duration. This includes
peer routing and content download (see Section 3.2). The figure
follows a step-wise pattern, with each step corresponding to a
unique combination of nodes publishing and fetching the content

4At this point, it is also worth highlighting that due to our experiment setup, none
of the requests are satisfied at the Bitswap level, hence, in all experiments presented
here, retrievals include an extra 1 s for the Bitswap timeout and constitute worst-case
scenarios.
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Figure 10: CDFs of the retrieval stretch (defined in equa-
tion 2) for each AWS vantage point with (a) and without (b)
the initial Bitswap timeout.

(recall that each node is in a different region). Over 99 % of all con-
tent exchange operations take less than 1.26 s. We emphasize that
this number is dependent on the amount of data being exchanged
(which is set to 0.5MB in our measurement setup), i.e., higher data
volume reduces the overall retrieval percentage spent on discovery.
Retrieval Stretch. To compare IPFS retrieval operations against
HTTPS, we measure request stretch as the ratio of the IPFS retrieval
time vs. the estimated HTTPS retrieval time (e.g., retrieving an
object using a URL via HTTPS):

Stretch =
IPFS Content Retrieval Time

HTTPS Content Retrieval Time
(1)

=
Discover + Dial + Negotiate + Fetch

Dial + Negotiate + Fetch
. (2)

In IPFS vernacular, Dial is equivalent to the TCP handshake; Nego-
tiate is equivalent to the TLS handshake; and Fetch is equivalent to
issuing the GET request and byte transfer. Put simply, we roughly
estimate the “HTTPS Content Retrieval Time" by subtracting the
DHT “Discover" latency from the “IPFS Content Retrieval Time".
Figure 10a shows CDFs for the stretch of all content retrieval op-
erations for each AWS region. The majority of content retrieval
operations take at least four times as long as the equivalent HTTPS
request across all AWS regions. This could be characterized as the
“cost of decentralization” when using IPFS. However, recall that the
“Discover” step in the IPFS case also includes the Bitswap delay
mentioned in Section 3.2, which adds 1s and is always present in
our experiments, due to our experimental setup. To inspect the
impact of this, Figure 10b shows the stretch CDFs without the ini-
tial Bitswap delay. We note that especially for the IPFS instance
in central Europe, the “cost of decentralization” is comparably low
with a stretch < 2 for 80 % of content retrieval operations. This
shows that, arguably, running DHT lookups in parallel to Bitswap
could be superior, by trading additional network requests for faster
retrieval times.

6.3 Gateway Evaluation
We finally turn to the Gateway data to inspect its performance, as
well as usage.

Figure 11: (a) Distribution of upstream response latency at
gateway (top 𝑥-axis) and bytes downloaded per request to
the gateway from peers (bottom 𝑥-axis). Latencies incurred
for serving non-cached requests are present to the right of
dotted red line. (b) Proportion of cached and non-cached
traffic binned at every 30min.

Table 5: Traffic and latencies to the gateway, when content
is served from default nginx cache, the IPFS node store, and
from other peers in the IPFS network.

nginx cache IPFS node store Non Cached

Latency (Median) 0 s 8ms 4.04 s
Traffic Served 46.4 % 38.0 % 15.6 %
Requests Served 46.0 % 40.2 % 13.8 %

Object Size. The gateway dataset allows us to obtain a sample of
content objects being requested from clients. This provides van-
tage on the size distribution. In total, we observe 6.57 TB being
downloaded during our measurement period. Figure 11a (𝑥1-axis)
presents the distribution of object sizes (bytes loaded). We see a
wide variety. The majority (79.1 %) are above 100KB, with a me-
dian of 664.59 KB. We also find there is no correlation between the
object size and the latency (Pearson correlation coefficient of 0.13),
again confirming that delays are primarily driven by size-agnostic
operations (e.g., DHT walks).
Retrieval Delays. The gateway further provides a second source
of IPFS retrieval latency measurements. Each GET request log entry
is accompanied by the delay it took the gateway to retrieve the
object (either from IPFS or its cache). Figure 11a (𝑥2-axis) plots the
distribution of retrieval latencies (as defined in Section 6.2).

46 % of fetches have a retrieval delay of 0, which indicates a
default nginx cache hit. The remaining 54 % enter IPFS via the peer
bridge co-located on the gateway. 67.1 % of these are served from
the local IPFS node store itself, resulting consistently in a delay
below 24ms (as marked by the vertical line in the figure). Recall,
this store contains content manually uploaded by the Web3 and
NFT Storage Initiatives. Due to the efficacy of this caching, 76 %
of requests are delivered in less than 250ms. This is substantially
better than observed from our prior measurements (see Section 6.2)
and exemplifies a benefit of aggregating demand at the gateways.
Cache Hit Rates. Figure 11b presents the fraction of cache hits vs.
misses across the one day period in our dataset. Table 5 summarizes
the key performance results. Hit rates in the nginx cache vary from
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32.3 % (at 00:00) to 65.6 % (at 17:30). These hits serve close to 50%
of the total traffic. When combined with pinned content stored in
the gateway’s local IPFS node, hit rates exceed 80 %. This indicates
that the gateway offloads substantial traffic from the remaining
IPFS network and (as shown in Table 5) reduces fetch times. That
said, content that is not cached experiences slower retrieval times,
although this only constitutes 15.6 % of bytes transferred. This
suggests that augmenting IPFS with a gateway model does offer a
meaningful strategy for reducing delays by aggregating demand
via the cache.
Gateway Referrals. We finally inspect the HTTP referrals ob-
served in the gateway’s nginx logs. These indicate the website that
redirected the web client to the gateway. Indeed, the majority of
this traffic (51.8 %) is referred by third party websites, confirming
the integration of IPFS with more traditional HTTP hosted sites.
Interestingly, 70.6 % of this referred traffic belongs to just 72 semi-
popular websites (rank 10 k–50 k based on Tranco list5 [39]). The
majority of these parent sites are hosted in the US (47.3 %), Iceland
(20.0 %) and Canada (12.7 %). Manual inspection shows that these
are primarily video streaming and Non-Fungible Token (NFT) re-
lated sites, as many people have chosen to store NFTs on IPFS.6
This suggests that IPFS is receiving widespread uptake in these
targeted use cases.

6.4 Discussion & Takeaways
IPFS is designed to offer publication and retrieval delays capable of
supporting a range of applications. IPFS attains shorter retrieval
delays compared to prior large-scale DHT deployments. For exam-
ple, the median lookup latency for the Kademlia implementation
in BitTorrent (both Mainline and Azureus) exceeds a minute [18],
due to excessive dead nodes, as well as slower links at that time.
Our observations indicate that the distinction between server and
client peers (see Section 2.3) (after the v0.5 release of IPFS) has
given a significant boost to the performance of IPFS, as peers avoid
costly operations of attempting to punch through NATs, failing and
timing out eventually.

In contrast, for half of our probes, the record lookup stage takes
under one second, showing a dramatic improvement over past DHT
deployments. That said, the overall IPFS content retrievals have
a median stretch of 4.3 (compared to HTTPS), although we find
that removing the initial Bitswap timeout can decrease the stretch
to < 2 for 80 % of retrievals in well-connected areas. We argue
that this makes IPFS suitable for various applications, including
video on demand, file sharing and other social networking services.
In comparison, publication delays are higher (median of 33.8 s),
due to the need to push records onto 20 distinct peers (to protect
from churn, see Section 5.3). For many applications, this delay
would be acceptable (e.g., publishing a movie), as exemplified by
the number of applications already built on IPFS (see [5] for a non-
exhaustive list). However, we acknowledge that the performance
users experience over the last mile to their homes will differ from
what we have observed from AWS data centres.

We have further experimented with several ways to streamline
uptake and performance, including the use of gateways. Although

5List collected a day after the log capture at the gateway
6https://docs.ipfs.io/how-to/best-practices-for-nft-data/

arguably a centralized entity, we find that it can substantially speed-
up retrievals with 46 % of retrievals being served via the nginx cache.
Uptake is wide, with 101 k users hitting the gateway in a single
day. We further note that anybody can set up their own gateway,
ensuring that no single entity could emerge as a gatekeeper.

7 RELATEDWORK
P2P Networks. There have been countless P2P overlay architec-
ture proposals, including dozens of DHT structures [30, 32, 54, 59,
72], and tens of applications, e.g., large-scale content delivery plat-
forms [15], and services such as decentralized social networks [25].
Rather than devising an entirely new system, IPFS utilizes the
Kademlia DHT for content indexing [44]. There have been various
attempts to optimize the performance and usability of such DHTs
via caching [55], network-aware peer selection [33], and paralleliz-
ing lookups [60]. IPFS builds on these and currently constitutes one
of the largest deployments of peer-to-peer networks “in the wild”
(alongside BitTorrent, which also uses Kademlia [15]). IPFS also
strives to be censorship resistant. Approaches such as Freenet [13]
andWuala [41] have similar goals. These work by storing encrypted
content across an arbitrary subset of peers. In contrast, IPFS takes a
BitTorrent-like approach where nodes store only the content they
are interested in.
Evaluation of Operational DHTs. Closer to our work are studies
that measure operational DHTs [22, 66]. For example, the authors
in [22] report churn rates similar to our findings. However, they
have not carried out similar controlled experiments from multiple
vantage points. Instead, they attempted DHT lookups and report
latencies in the order of tens of seconds, significantly slower than
IPFS achieves. The authors in [18] and [70] measured performance
in the BitTorrent implementation of Kademlia. Their results con-
trast starkly with our own, showing a substantial number of failed
nodes that negatively impact lookup times. Finally, Stutzbach and
Rejaie [60], modeled Kademlia performance and proposed a set
of improvements. Despite this, both studies revealed substantially
worse performance than attained by IPFS.
The Fediverse. The growth of the IPFS network has occurred in
tandem with other Decentralized Web technologies, most notably
the “fediverse”. The fediverse includes a number of server-based fed-
erated services, e.g.,Mastodon [49], Pleroma [27] and Diaspora [26].
Closest to our own work is Nextcloud, which provides a federated
file storage platform, with IPFS integration in addition to server-
local storage [2]. This is complementary to our own work, and
operates in a similar fashion to IPFS gateways. In contrast, however,
IPFS can continue to operate without gateways, whereas fediverse
apps are entirely dependent on the uptime of the federated servers
(see [49] for detailed analysis).
Incentives. There have been several studies that look at incen-
tivizing participation in P2P systems [48]. There are also several
large operational decentralized and incentivized P2P storage net-
works [1, 65, 69] with Filecoin [1] in particular building directly
on top of IPFS and being the largest decentralized and incentivized
storage network at the time of writing [68]. IPFS does not incen-
tivize data storage, sharing, or participation in the network. IPFS
can be considered a best-effort caching, storage and distribution
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layer that sits underneath the incentive structures layer. Section 5
shows that even without direct incentives, participation in IPFS is
widespread, in-part because nodes are not required to store other
users’ content.

In order to go a step further and provide availability guarantees,
“pinning services" offer to host and provide user content for a fee
(see Pinata, or Infura). Availability guarantees can also be provided
by Filecoin [1]. Filecoin’s total storage capacity stands at 17.5 EiB
at the time of writing (compared to AWS’s 194 EiB7). Given that
Filecoin is built on top of IPFS, it is expected to increase traffic in
the IPFS network significantly in the coming years.
Content-Based Addressing. Content-based addressing has been
widely used in P2P networks for many years [10, 40, 51]. More
recently, content addressing has received significant uptake by
the Information-Centric Networking (ICN) community. Prominent
architectural proposals in this field include Networking Named
Content (NNC) [31], Named Data Networking (NDN) [71], NetInf
(which is also DHT-based) [19], Curling [12], as well as Secure
Scuttlebutt (SSB) [63], more recently. IPFS is complementary to
these proposals. Whereas they largely introduce content-based
addressing at the network-layer, IPFS relies on application-layer
routing. Clearly, if designed carefully, synergies between network-
layer and overlay-based approaches can complement each other and
result in a universal content-based addressing networking stack.
Decentralized Web Data Management. Researchers have also
looked at data management and decentralized content storage more
generally [58, 62]. For example, various projects have attempted
to decentralize data control, e.g., DataBox [47], SOLID [42], and
SocialGate [35]. These operate local datastores for individual users,
e.g., running on a physical home appliance. While these solutions
focus on controlling data usage and access, IPFS has a broader focus
in providing a decentralized storage system, e.g., by serving as a
back-end [46].

8 CONCLUSIONS
This paper has detailed the design, implementation and deployment
of the InterPlanetary File System (IPFS). As well as presenting the
core design of IPFS, we have presented measurement tooling that
allows us to gain vantage on its decentralized operations. We have
shown that IPFS has received widespread uptake, covering 152
countries and 2715 ASes. This uptake is in-part enabled by our
hybrid gateway design, which has received considerable usage. The
IPFS codebase8 and datasets are freely available.

There are a number of avenues of future work. Most relevant, we
plan to focus on minimizing retrieval and publication latency. For
instance, we plan to exploit the Bitswap protocol to preemptively
pair peers who may have similar content interests. We also plan to
continue our large-scale performance monitoring to gain greater
longitudinal insight into the scale and performance of the several
components of the IPFS architecture. We plan to expand our studies
to components such as the Hydra boosters,9 which we have not
covered here due to space constraints and their limited adoption.

7https://www.storageindex.io/
8https://github.com/ipfs/ipfs
9https://github.com/libp2p/hydra-booster

We further wish to emphasize that IPFS offers properties that
go beyond those discussed within the remit of this paper. IPFS is
an open, permissionless system and, as such, moderation remains
a challenge. Studying potential forms of misuse is therefore a key
line of future work. For instance, there have been reports that the
Storm botnet10 lives on the IPFS network, but the precise intention
and activities of the botnet have not yet been identified. Our initial
monitoring did not show abusive activity by IPStorm nodes (e.g.,
frequent switching of PeerIDs, higher than usual rate of churn, or
unresponsive behaviour), but investigation is part of our future
plan. Similarly, we are yet to evaluate the resilience of IPFS or
its capacity to sustain various types of information attacks (e.g.,
censorship). Although our results shed light on these matters, for
example, revealing that IPFS is robust to churn and is sufficiently
geographically distributed to avoid single points of failure, this
area is ripe for further work. As part of this, it is important to
better understand the reliance that IPFS has on other centralized
infrastructure (e.g., cloud platforms), and to explore the types of
networks that host IPFS nodes (e.g., homes, universities). Thus,
we plan to continue developing measurement techniques that can
quantify these issues, and feedback into our ongoing community-
driven design process.
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